• 2
  • 47 Views
  • All levels

State the horizontal asymptote of the rational function. f(x) = x+9÷x^2+2x+3

Leave an answer

Our People Answers

1

(Based on todays review)

  • DivineSolar

    Assuming you know the asymptote rules. We want to use the one that states if numerator's degree = 1 + denominators degree, the asymptote is a slant symptote in the form of y = mx + b.
     \lim_{n \to \infty}  \frac{f(x)}{x} \ \textgreater \   \lim_{n \to \infty} [tex] \lim_{n \to \infty} ( \frac{x + 9}{x^2} + 2x + 3 - 2x) \ \textgreater \  refine \ \textgreater \   \lim_{n \to \infty} ( \frac{x + 9}{x^2}  + 3) \ \textgreater \ 2 [/tex]
    Now write the exception of indeterminate form.
     \lim_{n \to \infty} ( \frac{x + 9}{x^2}  \lim_{n \to \infty}3
    For   \lim_{n \to \infty} ( \frac{x + 9}{x^2}) we want to divide by the highest denominator power.
    ( \frac{x}{x^2} +  \frac{9}{x^2})/ \frac{x^2}{x^2} \ \textgreater \  refine \ \textgreater \   \frac{1}{x} +  \frac{9}{x^2}
    Write the exception again.
     \lim_{n \to \infty}  \frac{1}{x} +  \lim_{n \to \infty}  \frac{9}{x^2}
    Apply the infinite property to both!  \lim_{n \to \infty} ( \frac{c}{x^a} ) = 0 \ \textgreater \   \lim_{n \to \infty}  \frac{1}{x} = 0 \ \textgreater \   \lim_{n \to \infty}  \frac{9}{x^2} = 0 \ \textgreater \  0 + 0 = 0
    For 3 apply  \lim_{x \to a^c}= c \ \textgreater \  3 \ \textgreater \  0 + 3 = 3
    Now combine our terms and we get y = 2x + 3